

--- ----------
Lab: Sequential Machines
Author: Roger Hui
To advance the lab, select menu Studio|Advance or t he
corresponding shortcut.

-- (1 of 17) Introduction ------------------------- ----------

x;:y implements a sequential machine (finite state machine,
finite state automaton). x is the specification o f a
machine, including the state transition table, and y is the
input. A sequential machine solves the problem of
recognizing the "words" in the input. The machine starts in
some initial state and processes the input one item at a time.
Given the current state and input item, the new sta te and
output are determined by the state transition table . The
machine then proceeds to the next input item.

-- (2 of 17) Introduction (ctd) ------------------- ----------

x=.f;s;m;ijr is a boxed list of the specifications for a
machine.

f is a function code. m is an input mapping. ijr are the
initial settings. ijr or both m and ijr may be eli ded.

s is a state transition and output table ("state ta ble" for
short). s is actually a 3-dimensional array with s hape
(p,q,2) where p is the number of states and q is th e number
possible mapped inputs. However, it is convenient to speak
of s as a p by q table of pairs. The pairs are 2 i ntegers
denoting the new state and the output code.

The arguments are described in greater detail in la ter
sections of this lab.

-- (3 of 17) Example: Cut ------------------------- ----------

The following example mimics the functionality of t he monad
<;.1 (cut). The space specifies a cut point, and e ach cut
(word) is boxed.

The input mapping is ' '=a. -- the space character is mapped
to 1 and other characters are mapped to 0.

The state table has 2-columns (2 possible mapped in puts) and
2 rows.

Column 0 is for "other" (non-space) and column 1 is space.

Row 0 is the initial state. The sequential machine persists
in this state until a space is scanned. When that happens,
a new word is started and then it goes into and rem ains in
state 1. In state 1, if a non-space is scanned, th ere is no
output; if a space is scanned, the current word is output
and a new word begins. At the end, the then curren t word is
output.

Page 1 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

Can you define a sequential machine such that the s pace is
excluded from the word?

 sc=: 2 2 2$ 0 0 1 1 1 0 1 2 NB. state table
 <"1 sc
+---+---+
|0 0|1 1|
+---+---+
|1 0|1 2|
+---+---+
 y=: ' fourscore and seven years ago, our fathers'
 (0;sc; ' ' =a.) ;: y
+----------+----+------+------+-----+----+--------+
| fourscore| and| seven| years| ago,| our| fathers|
+----------+----+------+------+-----+----+--------+
 (0;sc; ' ' =a.) ;: 'junk@front zero two'
+-----+-+----+
| zero| | two|
+-----+-+----+

-- (4 of 17) Example: Cut (ctd) ------------------- ----------

A benchmark comparing the sequential machine and th e cut
primitive demonstrates the efficiency of the sequen tial
machine approach.

 f=: (0;sc; ' ' =a.)&;: NB. sequential machine method
 g=: <;.1 NB. cut primitive
 y=: 1e6$ ' fourscore and seven years ago, our fathers'
 (f -: g) y
1

 ts=: 6!:2 , 7!:2@] NB. time and space
 ts 'f y'
0.110595 1.42287e7
 ts 'g y'
0.091472 1.21316e7

-- (5 of 17) The Sequential Machine Computation --- ----------

Certain quantities are helpful in understanding the
sequential machine computation. These are:

 i iteration index (also input index)
 j beginning index of the current word
 r current state
 c current mapped input
 0{s{~<r,c new state
 1{s{~<r,c output code

By default: i runs from 0 to (#y)-1. The word ind ex j is
initialized to _1 and is set as specified by output codes in
the state table, according to the current state r a nd the
current mapped input c. Likewise, the current stat e r is
initialized to 0 and is set as specified by the sta te table,
according to the current state and the current mapp ed input
c.

Page 2 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

Non-default values for i, j, and r can be specified in last
item of the left argument. (See a later section of this
lab.)

-- (6 of 17) Arguments ---------------------------- ----------

As outlined briefly, the left argument x is f;s;m; ijr and
the right argument y is the input. These are descr ibed in
detail in the following sections.

-- (7 of 17) Input and Mapped Input --------------- ----------

The right argument y is the input. y is usually a string but
can be any array.

Item 2 of the left argument x (m=.>2{x) is a mappin g on the
input. For example, in the "cut" example in a prev ious
section, the input is a string and the mapping is ' '=a. --
i.e. the space character is mapped to 1 and all oth er
characters are mapped to 0. Typically, in working with
sequential machines, the first items to be decided are the
input and the input mapping.

If y is a string, then m is usually a 256-element i nteger
list, where each element specifies an integer value for
the corresponding character. (e.g. ' '=a.)

In general, m is a boxed list, where >i{m contains the items
that should be mapped to the integer i . For examp le,
m=.'aeiouy';'bcdfghjklmnpqrstvwxz' specifies that the
letters a e i o u y are mapped to 0, other lower ca se letters
are mapped to 1, and all other characters are mappe d to 2.
The mappings ' '=a. and <a.-.' ' are equivalent .

If m is elided or is the empty vector, then the inp ut y is
used as is. In that case y must be an integer list .

The state transitions and output are determined by the
mapped input, but the output words are formed from the
original input.

-- (8 of 17) State Transition and Output Table ---- ----------

Item 1 of the left argument x (s=.>1{x) is a state transition
and output table ("state table" for short). s is a ctually a
3-dimensional array with shape (p,q,2) where p is t he number
of states and q is the number possible inputs. How ever, it
is convenient to speak of s as a p by q table of pa irs.
The pairs are 2 integers denoting the new state and the
output code.

q, the number of columns in the state table, must b ound the
input mapping values.

Typically, in working with sequential machines, the state
table is the next to be devised after the input map ping.
Start with a table of with q columns and as many ro ws
(states) as one can think of. The new state and ou tput need

Page 3 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

to be decided for each state and mapped input combi nation.
In the process, quite often additional states are a dded.

Sometimes the state table is sufficiently complicat ed that
it is computed by a program from other information. The
Huffman coding lab has an example of this.

-- (9 of 17) Output Codes ------------------------- ----------

The second element of the pairs in a state table is an output
codes, one of the integers from 0 to 6.

 0 no output
 1 j=.i
 2 j=.i [ew(i,j,r,c)
 3 j=._1 [ew(i,j,r,c)
 4 j=.i [ev(i,j,r,c)
 5 j=._1 [ev(i,j,r,c)
 6 stop

j is the beginning index of a word and is initializ ed to _1
(or 1{ijr if ijr is supplied).

ew(i,j,r,c) ("emit word") checks that j is not _1 a nd emits
information on a word according to the function cod e f .

ev(i,j,r,c) ("emit vector") is similiar, but the cu rrent word
is catenated to the previous word if the previous e mit was ev
and the state at that time was r . ev is used to f orm
"vector constants" and is not used in most applicat ions.

-- (10 of 17) Function Codes ---------------------- ----------

The function code f (the first item in the left arg ument) is
one of the integers from 0 to 5. 0 to 4 specify th e
treatment of a word at the time of output. 5 speci fies
trace.

 0 <y{~j+i.i-j the word boxed
 1 y{~j+i.i-j the word
 2 j,i-j word index and length
 3 c+q*r state table index
 4 j,(i-j),c+q*r both 2 and 3 above
 5 i,j,r,c,s{~<r,c trace

Typically, function code 0 would be used if the wor ds
themselves are of interest.

Function code 1 would be used if some words are ret ained
while others are discarded (as in the quote/non-quo te
example in a later section of this lab).

Function codes 2, 3, or 4 are used if the result of x;:y
is used for further computation. For example, in H uffman
decoding it is convenient to use function code 3 (s ee the
Huffman Coding lab).

Function code 5 can be useful for debugging. It pr ovides
a trace of the sequential machine computation. The result

Page 4 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

is a 6-column table of quantities that completely d escribe
the sequential machine computation.

The examples below use the state table sc (cut on s pace)
from a previous section.

 (0;sc; ' ' =a.) ;: y=: ' tonic chthonic'
+------+---------+
| tonic| chthonic|
+------+---------+
 (1;sc; ' ' =a.) ;: y
 tonic chthonic
 (2;sc; ' ' =a.) ;: y
0 6
6 9
 (3;sc; ' ' =a.) ;: y
3 2
 (4;sc; ' ' =a.) ;: y
0 6 3
6 9 2
 (5;sc; ' ' =a.) ;: y
 0 _1 0 1 1 1
 1 0 1 0 1 0
 2 0 1 0 1 0
 3 0 1 0 1 0
 4 0 1 0 1 0
 5 0 1 0 1 0
 6 0 1 1 1 2
 7 6 1 0 1 0
 8 6 1 0 1 0
 9 6 1 0 1 0
10 6 1 0 1 0
11 6 1 0 1 0
12 6 1 0 1 0
13 6 1 0 1 0
14 6 1 0 1 0

-- (11 of 17) Initial Settings -------------------- ----------

The initial settings ijr (>3{x) are 3 integers:

 i iteration index (also input index)
 j beginning index of a word
 r initial state

If ijr is elided, then the defaults are 0 _1 0 .

-- (12 of 17) Argument Checking ------------------- ----------

The verb smcheck below may be helpful in checking t he
arguments x and y in x;:y for errors.

If x smcheck y does not signal error, then the only logic
error that can occur in x;:y is "index error" -- th e word
index j is _1 when outputting a word. ("out of mem ory",
"break", and "attention interrupt" can also be sign alled.)

 type=: 3!:0 NB. internal type

Page 5 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

 smcheck=: 4 : 0 NB. check arguments of sequential machine
 assert. 32=type x.
 assert. (<$x.) e. ,&.>2 3 4 NB. 2- or 3- or 4-element list
 'f s m ijr'=. 4{.x. NB. function code; state ; mapping; initial state
 assert. (0=#$f) *. f e. i.6 NB. function code is from 0 to 5
 assert. (3=#$s) *. 2={:$s NB. state is a 3-d, 2-column array
 assert. (0<:s) *. s-:<.s NB. positive integers
 assert. (#s) > >./,0{"1 s NB. new states
 assert. (1{"1 s) e. i.7 NB. output codes
 assert. 1=#$m NB. mapping is a vector
 q=. 1{$s
 if. '' -:m do. NB. if m is empty
 assert. (1=#$y.) *. y.-:<.y. NB. y is used as is
 assert. q > y.
 elseif. (1:@:+: :: 0:) m do. NB. if m is numeric
 assert. q > m
 assert. m -:&$ a. NB. m specifies mapping on alphabet
 assert. m e. i.#a. NB. mappings are non-negative integers
 assert. (1=#$y.) *. 2=3!:0 y. NB. y must be a string
 elseif. 1 do.
 assert. 32=type m NB. else m must be boxed
 assert. q > #m
 assert. (#$;m) e. 0 1+#$y.
 end.
 if. -. '' -:ijr do. NB. ijr may be elided or empty
 assert. (,3)-:$ijr NB. 3-element vector
 assert. ijr-:<.ijr NB. integers
 'i j r'=. ijr
 assert. (0<:i)*.i<i.#y. NB. iteration index (also index into input)
 assert. (_1=j)+.(0<:j)*.j<i NB. beginning index of a word
 assert. (0<:r)*.r<p NB. initial state
 end.
 1

 (1;sc; '''' =a.) smcheck 'abc'
1
 (9;sc; '''' =a.) smcheck 'abc' NB. deliberate error
|assertion failure: smcheck
| (0=#$f)*.f e.i.6

-- (13 of 17) Example: English Words -------------- ----------

A sequential machine that selects the words in ordi nary
English text is similar to the machine in a previou s section
that cuts on words separated by spaces.

The mapping is 1 for letters of the alphabet (majus cules and
minuscules) and 0 for everything else.

 se=: 2 2 2 $ 0 0 1 1 0 3 1 0
 <"1 se
+---+---+
|0 0|1 1|
+---+---+
|0 3|1 0|
+---+---+
 f=: (0;se;(i.#a.) e. ,(a.i. 'Aa')+/i.26)&;:

Page 6 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

 f 'In the beginning, E=mc^2'
+--+---+---------+-+--+
|In|the|beginning|E|mc|
+--+---+---------+-+--+

-- (14 of 17) Example: Quotes and Non-quotes ------ ----------

The following example separates quotes from non-quo tes.

The input mapping is ''''=a. -- the quote character is
mapped to 1 and other characters are mapped to 0.

The state table has 2-columns (possible mapped inpu ts) and 4
rows. Column 0 is for "other" (non-quotes) and col umn 1 is
quotes. The rows (states) are:
 0 initial state
 1 outside of quotes
 2 within a quote
 3 within a quote and a quote is seen

For example, suppose the current state is 1 (outsid e of
quotes). If the current mapped input is 0 (other), then
the relevant state table entry is 1 0: the new stat e is
1 and the output code is 0 (no output). On the oth er hand,
if the current mapped input is 1 (quote), then the relevant
state table entry is 2 2: the new state is 2 (withi n quotes)
and the output code is also 2 (emit the current wor d) and
start a new word.

State 3 is for handling the convention whereby two quotes
within a quote are interpreted as a single quote, a nd not
terminating the quoted string and immediately start ing a new
quoted string.

The function code is 0 -- box the words.

 sq=: 4 2 2$ 1 1 2 1 1 0 2 2 2 0 3 0 1 2 2 0
 <"1 sq
+---+---+
|1 1|2 1|
+---+---+
|1 0|2 2|
+---+---+
|2 0|3 0|
+---+---+
|1 2|2 0|
+---+---+
] y=: '''The Power of the Powerless'' by Havel and ''1984 '' by Orwell'
'The Power of the Powerless' by Havel and '1984' by Orwell
 (0;sq; '''' =a.) ;: y
+----------------------------+--------------+------ +----------+
| 'The Power of the Powerless' | by Havel and | '1984' | by Orwell|
+----------------------------+--------------+------ +----------+
] y=: '''Don''''t tread on me!'' He said.'
'Don''t tread on me!' He said.
 (0;sq; '''' =a.) ;: y
+---------------------+---------+
| 'Don''t tread on me!' | He said. |
+---------------------+---------+

Page 7 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

-- (15 of 17) Example: Quotes and Non-quotes (ctd) ----------

If the desired result is the text outside of quotes , then
function code 1, the words not boxed, should be use d.
As well, the output code for quotes is specified in such a
way that the quoted words are not output (not caten ated).

The traditional method for this computation is base d on the
not-equal scan. The primitives used in the not-equ al scan
method are individually highly optimized in the int erpreter.

A benchmark comparing the two methods demonstrates the
efficiency of the sequential machine approach.

 sqx=: 4 2 2 $ 1 1 2 0 1 0 2 3 2 0 3 0 1 1 2 0
 <"1 sqx
+---+---+
|1 1|2 0|
+---+---+
|1 0|2 3|
+---+---+
|2 0|3 0|
+---+---+
|1 1|2 0|
+---+---+
 (":<"1 sq) ,. ' ' ,. (": <"1 sqx) ,. ' ' ,. ": <"1 sq=sqx
+---+---+ +---+---+ +---+---+
|1 1|2 1| |1 1|2 0| |1 1|1 0|
+---+---+ +---+---+ +---+---+
|1 0|2 2| |1 0|2 3| |1 1|1 0|
+---+---+ +---+---+ +---+---+
|2 0|3 0| |2 0|3 0| |1 1|1 1|
+---+---+ +---+---+ +---+---+
|1 2|2 0| |1 1|2 0| |1 0|1 1|
+---+---+ +---+---+ +---+---+

] y=: '''The Power of the Powerless'' by Havel and ''1984 '' by Orwell'
'The Power of the Powerless' by Havel and '1984' by Orwell
 (1;sqx; '''' =a.) ;: y NB. catenated words
 by Havel and by Orwell

 f=: (1;sqx; '''' =a.)&;: NB. sequential machine method
 g=: (+: ~:/\)@('''' &=) #] NB. not-equal scan method
 y=: 1e6$y
 (f -: g) y
1

 ts 'f y'
0.0242 1.04941e6
 ts 'g y'
0.0182928 3.14656e6

-- (16 of 17) Example: J sentences ---------------- ----------

The dictionary entry on ;: contains a sequential ma chine
implementation of word formation on J sentences, us ing a

Page 8 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

10 by 9 state table.

If the rhematic rules are restricted so that NB. has no
special significance, then a 6 by 7 state table suf fices.

 mjx=: ' ' ;(a.{~,65 97+/i.26); '0123456789_' ; '.' ; ':' ; ''''
 t=. 0 7 2$0
 NB. S A 9 D C Q X
 t=.t,_2]\ 0 0 2 1 3 1 1 1 1 1 4 1 1 1 NB. 0 space
 t=.t,_2]\ 0 3 2 2 3 2 1 0 1 0 4 2 1 2 NB. 1 other
 t=.t,_2]\ 0 3 2 0 2 0 1 0 1 0 4 2 1 2 NB. 2 alphanumeric
 t=.t,_2]\ 0 5 3 0 3 0 3 0 1 0 4 4 1 4 NB. 3 numeric
 t=.t,_2]\ 4 0 4 0 4 0 4 0 4 0 5 0 4 0 NB. 4 quote
 t=.t,_2]\ 0 3 2 2 3 2 1 2 1 2 4 0 1 2 NB. 5 even quotes
 sjx=: t

 f=: (0;sjx;<mjx)&;:
 f y=: '(2*a) %~ (-b) (+,-) %: (*:b)-4*a*c'
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+--+-+-+-+-+-+ -+-+-+
|(|2|*|a|)|%|~|(|-|b|)|(|+|,|-|)|%:|(|*:|b|)|-|4|*| a|*|c|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+--+-+-+-+-+-+ -+-+-+
 (f -: ;:) y
1
 (f -: ;:) '1 2 3 +/ . * 4 5 6'
1
 (f -: ;:) 'gm=: */ %:~ #'
1

-- (17 of 17) Other Examples ---------------------- ----------

See the lab "Huffman Coding" for another example of using
sequential machines.

Page 9 of 9Lab: Sequential Machines

10/24/2004Layout: Oleg Kobchenko

