NB. J BY EXAMPLE
NB.             J is product of JSoftware Inc.  http://jsoftware.com
NB. v3 07/04/2005 (C) Oleg Kobchenko  http://olegykj.sourceforge.net

NB. simple arithmetic ===============================================

   2 + 2         NB. comment is 'NB.'
4
   2 - 3         NB. negative numbers use '_'
_1
   2 * 3 + 4     NB. no precedence, right to left
14
   (2 * 3) + 4   NB. parentheses changes order
10
   3 % 4         NB. division represented by '%'
0.75
   *: 4          NB. square
16
   %: 4          NB. square root
2
   % 4           NB. 1/x
0.25

NB. operations using lists ==========================================
   
   2 * 1 2 3     NB. numeric list with space separators
2 4 6
   1 2 3 % 2 4 6 NB. list to list operations, same size
0.5 0.5 0.5
   #1 2 3        NB. size of vector
3
   3$1           NB. generate sequence of same numbers
1 1 1
   5$1 2         NB. or from a list of given elements
1 2 1 2 1

NB. list elements ===================================================

   {.1 2 3       NB. first element
1
   {:1 2 3       NB. last element
3
   }.1 2 3       NB. rest without first element
2 3
   }:1 2 3       NB. rest without last element
1 2
   |.1 2 3       NB. reverse
3 2 1

NB. indexing and sorting ============================================

   1{1 2 3       NB. indexing is zero-based
2
   1 0{1 2 3     NB. index can be vector too
2 1
   i.3           NB. generate zero-based sequence
0 1 2
   2 4 6 i. 4    NB. index of given element(s)
1
   /:2 1 6       NB. indices of sorted order
1 0 2
   /:~2 1 6      NB. sort vector
1 2 6            NB. F~y <=> y F y

NB. list aggregation ================================================
1 2 3,10 20 NB. join vectors 1 2 3 10 20 1 + 2 + 3 NB. sum of elements 6 +/1 2 3 NB. insert '+' between elements 6 +/\1 2 3 NB. running sum of elements 1 3 6 1,(1+2),(1+2+3) NB. same as this 1 3 6 2+/\1 2 3 4 5 NB. sum or running pairs 3 5 7 9 _2+/\1 2 3 4 5 NB. non-intersecting pairs 3 7 5 (<1 2),3 4 6;7 6 NB. < is boxing, ; is box and join +---+-----+---+ |1 2|3 4 6|7 6| +---+-----+---+ >{. 3 4 6;7 6 NB. > is unboxing 3 4 6 NB. function combinations =========================================== (+ *:) 4 NB. hook (F G) y <=> y F (G y) 20 NB. a + a^2 (%: , *:) 4 NB. fork (F G H) y <=> (F y) G (H y) 2 16 NB. [sqrt(a), a^2] *:@(+/) 2 3 NB. composition (F o G) y <=> F G y 25 NB. (a + b)^2 2 +&*: 3 NB. x F & G y <=> (G x) F (G y) 13 NB. a^2 + b^2 2 (+&*: + 2: * *) 3 NB. (a + b)^2 = a^2 + b^2 + 2ab 25 NB. 0: 1: 2: ... are const functions 3 +&.*: 4 NB. F&.G y <=> (G^:_1) F G y 5 NB. sqrt(a^2 + b^2) NB. user defined functions and arguments ============================ m1=: - NB. ambivalent tacit m2=: 3 : '-y.' NB. monadic explicit m3=: 4 : 'x.-y.' NB. dyadic explcit (m1 , m2 , 0&m3) 4 NB. monadic use, 0& is bonding _4 _4 _4 3 (m1 , (+ m2) , m3) 4 NB. dyadic use, hook for dyadization _1 _1 _1 (m1 , m3) / 3 4 NB. distribute arguments: dyadization _1 _1 3 (m1 , m4) @ , 4 NB. collect arguments: monadization _3 _4 _3 _4 NB. exponent and logarithm ========================================== 1x1 2x1 1x2 NB. e, 2e, e squared 2.71828 5.43656 7.38906 ^2 NB. exponent, e^2 7.38906 2^16 NB. exponent base 2, 2^16 65536 ^. 1x2 NB. logarithm, ln e^2 2 2^.65536 NB. logarithm base 2, log2 65536 16
NB. trigonometry ====================================================
1p1 2p1 1p2 NB. pi, 2 pi, pi squared 3.14159 6.28319 9.8696 load'trig' NB. load trigonometry library cos 1p1 NB. cosine of pi _1 (*:cos 1p1) + *:sin 1p1 NB. theorem of trigonometry 1 (cos +&*: sin) 1 2p1 1p2 NB. same using fork and & 1 1 1 NB. matrices ======================================================== 1 2 3 */ 1 2 3 NB. outer product: multiplication table 1 2 3 NB. same as */~ 1 2 3 2 4 6 3 6 9 =/~i.3 NB. identity matrix, also =@i. (self-classify) 1 0 0 NB. F~y <=> y F y 0 1 0 0 0 1 ]M=. i.2 3 NB. generate matrix 0 1 2 3 4 5 2 2$0 1 1 1 NB. reshape given vector to matrix 0 1 1 1 NB. structural transforms =========================================== ,N=: i.2 2 3 NB. ravel: list of atoms 0 1 2 3 4 5 6 7 8 9 10 11 ,"2 N NB. ravel each sub-matrix 0 1 2 3 4 5 6 7 8 9 10 11 (]; |:; |.;|."1;1&|.) M=. 3 3$'ABC123!@#' NB. character matrix +---+---+---+---+---+ NB. ] returns argument |ABC|A1!|!@#|CBA|123| NB. |: transposes |123|B2@|123|321|!@#| NB. |. reverses outer list |!@#|C3#|ABC|#@!|ABC| NB. |."1 reverses inner list +---+---+---+---+---+ NB. 1|. rotates outer list ;:^:_1 </.M NB. oblique: secondary diagonals A B1 C2! 3@ # NB. same as (</.~&, +"0/~@i.@#) M NB. ;:^:_1 is inverse of boxing tokens i.@# } M NB. main diagonal A2# NB. selection ====================================================== 1{1{1{N NB. repetitive selection of items From list 10 1{^:3 N NB. apply select 3 times 10 (<1 1 1){N NB. scatter select 10 1 1 1 ({~ <)~ N NB. using unboxed list 10
NB. factorial and binomial ==========================================
! 1+i.5 NB. factorial 1 2 6 24 120 */\ 1+i.5 NB. running product 1 2 6 24 120 !/~ i.5 NB. binomial coefficients 1 1 1 1 1 0 1 2 3 4 0 0 1 3 6 0 0 0 1 4 0 0 0 0 1 +/@(! |.)\i. 15 NB. fibonacci: sum of second diagonal of binomial matrix 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 NB. dot product ===================================================== 1 2 3(+/ . *)1 2 3 NB. dot product 14 M=: 2 2$0 1 1 1 NB. assignment dot=: +/ . * NB. expression given a name dot~ M NB. matrix squared 1 1 1 2 dot^:(15)~ M NB. matrix to the power of 15, also fibonacci 610 987 987 1597 {:@{."2 dot^:(<15)~ M NB. F^:n is apply F n times accumulatively 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 NB. randomness and probability ====================================== ]A=: 5 ?@$ 0 NB. 5 random floats from 0..1 0.57708 0.542732 0.488337 0.26004 0.0101683 ]B=: 10 ?@$ 2 NB. coin toss 1 1 1 0 0 1 1 0 1 0 ]C=: 3 ? 3 NB. deal 3 out of 3 cards in certain order 1 2 0 (<./ , >./) A NB. min and max over the list 0.0101683 0.57708 B i. 0 NB. first zero 3 (+/ % #) C-:"1 (?~"0) 10000#3 NB. method monte carlo 0.1637 NB. -: is list equality, F"n is rank modifier %!3 NB. exact probability of 3 cards in given order 0.166667 NB. unique elements ================================================= ]D=.~. S=. 'mississippi' NB. distinct (nub) misp ]K=. D i. S NB. key (index) 0 1 2 2 1 2 2 1 3 3 1 K </. S NB. group by key +-+----+----+--+ |m|iiii|ssss|pp| +-+----+----+--+ K #/. S NB. frequencies 1 4 4 2 ]I=. ~: S NB. sieve of nub 1 1 1 0 0 0 0 0 1 0 0 NB. where D is in S I # S NB. filter by sieve to get D misp +/"1 =S NB. = is classify, bool matrix of S vs D 1 4 4 2 NB. where items of D are in S